MOTION OF A DISPERSE SYSTEM IN A CHANNEL WITH PERMEABLE WALLS
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The effect of filwration of the liquid phase through the channel walls
on the hydraulic resistance is considered in the case of flow in a
round tube. Depending on the flow parameters there may be either
an increase or a significant reduction (up to 50=~60%) in the hydraulic
resistance in comparison with flow in a tube with impermeable walls.

The dynamic characteristics of a flow of a disperse
system depend significantly on the filtration flow of
the liquid phase through the channel walls. On one
hand, filtration of the dispersion medium leads to an
additional effective pressure gradient in the flow (as
occurs in the flow of a uniform liquid [2]). This is
manifested in a reduction of the observed hydraulic
resistance in comparison with a flow in a channel
with impermeable walls. On the other hand, removal
of the liquid phase from the system leads to an in-
crease in the concentration of the system and its effec-
tive viscosity, with the result that the hydraulic resis-
tance increases.

A quantitative treatment of these effects is of in-
terest primarily in connection with applications to
several chemical manufacturing processes. In addition,
the problem of flow in a channel with permeable walls
can be regarded as a model of the flow of clay and
cement solutions in a well sunk in a porous stratum,

a situation of interest to the oil recovery industry.

It is necessary, generally speaking, to consider
separately the equations of motion of the dispersion
medium and the disperse phase even inregions of steady
flow. There is no consistent mechanical scheme at
present for doing this. Hence, we assume here that
the disperse medium can be regarded as a dispersoid
consisting of an ordinary viscous liquid with effective
viscosity 4, which depends on the volume concentra-
tion p of the solid phase. The following conditions must
be satisfied if this assumption is to be valid:

1. The medium must be sufficiently finely dispersed
and (or) uniformly dense, so that the Stokes velocity
of the particles is negligibly small in comparison with
the mean flow velocity. This is the case in a consider-
able number of hydraulic and even pneumatic trans-
port systems, as well as for the clay and cement solu-
tions usually used in practice.

2. Slipping at the walls is insignificant. This as-
sumption is usually valid if the diameter of the par-
ticles is much smaller than the linear dimensions of
the cross section of the channel.

3. The density of the filtration flow of the dispersion
medium is much less than the mean density of the main
flow in the section. Then changes in the logarithms of
all the quantities (except the pressure p) at distance
on the order of the linear dimensions of the cross sec-
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tion along the channel axis are small in comparison
with unity and the radial velocities are small in com-
parison with the velocity along the axis. In corre-
spondence with this assumption we also regard the
disperse medium as uniform in the radial directions.
Considering the equations of motion of a dispersoid
we see that we can neglect radial motion of the phases
only in the zero approximation for small derivatives
of the velocity and other quantities (except p) in the
direction of the flow.

In these approximations the axisymmetric steady
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Here B denotes the solid boundaries of the flow. For
a flow in a round tube we obtain from (1) a Poiseuille
velocity distribution. The equations of conservation
of mass of the phases in this flow in integral form are
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We regard the quantity q(z) as linearly dependent
on the pressure drop on the tube walls. We then have
¢ =0(2), k=k(.

q@) =k({@—e), (3)

This expression is valid for g > 0, or, if the tube is
immersed in the liquid phase of the given disperse
system, for any q. From (2) and (3) we obtain the
equations
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From (4) and from (1) we have the relationships for
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Using (4) and () we obtain a second-order equation
for p(z),
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For simplicity we consider below only the case of
flow in which ¢, R, and k are constant. Solving (6),
we obtain the equation
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In deriving (7) we used the initial conditions
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We note that instead of (8) we can use any other con-
ditions, e.g., we can assign the pressure at the outlet
of the tube, and so on.

For the effective viscosity of a dispersoid we can
use the empirical formula u = u(p, —p)~, where the
parameter n lies between 2 and 4, according to the
data of different authors. For definiteness we take
n = 3. Then, after integration we obtain from (7) (p, =
= max p) that
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Here we have introduced the dimensionless vari-
able and parameter
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Fig. 1. Relationship £ = £(p) for @ = 3-1075;
a) pg = 0.01; b) pg = 0.05; ¢) pg= 0.10.

Equation (9) holds if p = p*, where p* is the root
of the equation
F(p*) = a7 + F(po).

An analysis shows that this value is attained asymp-
totically when £ — «. As the following calculations
show, the value of p* differs very insignificantly from
P -

In many cases where o is small the term propor-
tional to o can be neglected in (9) (this corresponds to
neglect of the pressure decrease along the tube). Then,
from (9) we have

Ex 1 ——1—, o= L (11)
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This expression is a sufficiently good approximation to
(9) when pgt < L = pg/p,.

Curves £ = £(p), obtained after numerical integra-
tion of (9) on a computer, are shown in Fig. 1for a =
=3°107° and py = 0.01, 0.05, and 0.10.

The dashed lines in Fig. 1 show the relationships
& = £(p) derived from (11). In all the calculations here
and below we take p, = 0.60; the value of p* was always
greater than 0.58. It can be seen that a significant dif-
ference between the exact solution of (9) and the approx-
imate solution (11) is characteristic only of the region
of relatively high ¢ and p. The investigations show that
the values of £(p) for any p increase monotonically with
increase in a(very slowly when o 2 107=107% and
very rapidly when a > 1073,

Using formula (5), we obtain the following expreg-
sion for the ratio 8 of the true hydraulic resistance of
the channel to the resistance (Ap)g of this channel with
impermeable walls
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The relationships 8 = B(r) corresponding to the
curves in Fig. 1 are shown in Fig. 2 (solid curves);
the dashed lines give the curves of B(r) on the assump-
tion that the approximate expressions (11) are valid.
It is clear that with increase in the parameter r the
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Fig. 2. Relationships 8 = B(r) corresponding to curves
in Fig. 1.
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coefficient of reduction of the hydraulic resistance B
decreases at first, reaches a minimum when r = rg,
where r( depends onp; and o, and then begins to in-
crease, asymptotically approaching infinity whenp —
— p*. The last result is obviously due to the increase
in viscosity of the dispersoid with increase in its con-
centration, which plays the main role at large r. On
the other hand, at small r this effect is insignificant
and there is a reduction of the hydraulic resistance,
as in the case of motion of a uniform viscous liquid
through tubes with permeable walls [2]. We note that
at low «(of order 10 or less) the values of B areprac-
tically independent of « in the region of p of interest.

The pressure loss in the case of a flow of clay solu-
tions in tubes with permeable walls was determined
experimentally in [1]. (The most recent experimental
data relating to the reduction of hydraulic resistance
and the formation of a clay crust on the walls of the
channel were given in a paper by R, T. Aliev at the
Symposium on the Hydraulics of Drilling and Cement=-
ing Fluids, Kiev, April 1967.) The values of r in these
experiments corresponded to the region of reduction of
hydraulic resistance. Unfortunately, these experi-
ments were not accompanied by careful measurements
of the viscosity and a determination of py. This makes
it difficult to test the theory. There is good qualitative
agreement, however, between the theoretical and ex-
perimental results. For instance, in [1] the dependence
of 8 on the total filtration flowof the liquid phase through
the wall and on the pressure drop py — ¢, which
are proportional to r, was investigated. These experi-
mental relationships have precisely the same shape
as the descending portions of the curves of 8 (r) in Fig.
2.

Experiments also indicate that when sufficiently
concentrated disperse systems move through a tube or
well in a porous medium a crust consisting of par-
ticles of the dispersed phase forms on the walls and
this impedes the filtration of the dispersion medium,
For a thorough consideration of the dynamics of crust
formation we would obviously have to consider the un-
steady problem of motion of a complex medium and
take into account the interactions of individual solid
particles. Here we adopt a phenomenological approach
based on the principle of minimum energy dissipation.
This approach is often used in the physics of irrevers-
ible processes. It was applied earlier [3] to the motion
of disperse systems in a study of the wall effect and
led to results which agreed with the experimental re-
sults.

We assume that the flow produces an "equilibrium"
crust corresponding to the completely steady regime
and such that the energy dissipation (or pressure drop
in the tube) is a minimum. It is clear that the formation
of the crust will reduce both the effective tube radius
(which becomes R, = R — h, where h is the thickness
of the crust) and the proportionality factor k in (3), so
that the effective value of k, as can easily be shown, is

by () = (»;— +~81;>_1 . (14)
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Usually h < R and only the second effect is signif-
icant. In this case Ap reaches its minimum value at
the same value of r as the minimum of B (r). The rela-
tionship between 8 and k is of the same form as the
relationship B (r), since k ~ r, Using for simplicity
the crust thickness averaged over the length of the
tube we see that when r = r( no crust at all is formed,
but when r > ry, where the value of r is determined
from (13) with the value of k from (3), the crust thick~
ness is given by the equation

ke ()
PR

Thus, the buildup of the crust on the walls leads to
a reduction of the value of r corresponding to the region
of increase of function g (r) to the value ry correspond-
ing to the minimum value of 8. We note that a more
detailed analysis in which the change in crust thickness
with distance along the tube axis is taken into account
leads to the conclusion that crust formation does not
usually begin at the entrance section, but at some cross
section further downstream. The mean crust thickness
differs slightly from the root of Eq. (15). This gradual
buildup of the crust is also typical of oil-well experi-
ments.

We note that the last results apply to systems in
which there are no specific attractive forces between
the particles, i.e., the spontaneous formation of an
internally bound porous structure is impossible. In
the latter case, of course, the affinity between the par-
ticles would have to be taken into account.
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NOTATION

L is the tube length; R is the tube radius; p and ¢
are the pressure inside tube and external pressure,
respectively; Q is the flow of disperse system; q is the
density of flow of liquid phase through walls; p is the
volume concentration of solid phase in system, con-
nected with its porosity € by the relationshipp =1 — g;
k is the proportionality factor in the expression for q in
terms of p — ¢, which is proportional to the permeabil~
ity of the wall material; pu; is the viscosity of liquid
phase; u is the effective viscosity of disperse system;

h is the thickness of crust on walls; s is the crust per-
meability per unit thickness. The subscript zero in-
dicates parameters determined at the entrance sec-
tion of the tube.

REFERENCES

1. A, Kh. Mirzadzhanzade, A, K. Karaev, A, A,
Movsumov, U. D. Mamadzhanov, G, T. Gasanov, and
R. T. Aliev, Azerb. neft. khoz~vo., no. 4, 1967,

2. A. S. Berman, J. Appl. Phys., no. 9, 1953,

3. Yu. A. Buevich and A. I. Leonov, PMTF [Jour-
nal of Applied Mechanics and Technical Physics], no.
2, 1968.

18 January 1968 Institute of Problems of

Mechanics AS USSR, Moscow



